
86 Informatica Economică vol. 14, no. 2/2010

Optimizing Client Latency in a Distributed System by Using the “Remote
Façade” Design Pattern

Cosmin RABLOU

OctaVIA AG, Germany
cosminrablou@hotmail.com

In this paper we investigate the role of the Remote Façade pattern in the optimization of dis-
tributed systems. The intent of this pattern is to wrap fine-grained remote objects in a coarse-
grained interface and thus greatly reduce the total number of calls executed over the network.
The measurement of the performance gain achieved by implementing this pattern is done
through testing with a distributed application written in C# and using the latest Microsoft
framework for distributed systems (Windows Communication Framework). Furthermore, we
will be presenting the scenarios in which the implementation of the Remote Façade pattern
brings a significant performance gain. Finally we show further scenarios in which the per-
formance brought by this pattern can be investigated.
Keywords: Object-Oriented Programming, Distributed Systems, Design Patterns, Remote
Façade, Performance, Optimization, Windows Communication Framework

Introduction
The main reason behind a distributed sys-

tem is the performance gain when replicating
components across the network. However,
this performance gain can be easily lost when
implementing the wrong architecture. The
design patterns for distributed architecture
establish general rules that must be followed
in order to achieve a high-performance dis-
tributed system.

2 Description of a pattern
Every pattern can be uniquely defined using
four elements:
 The name – is a common term used to de-

scribe the pattern. By using pattern names
we create a metalanguage, which allows
us to design applications at a higher level
of abstraction.

 The problem – indicates us when to use
the pattern. The problem describes the
context where the pattern can be applied.

 The solution – describes in terms of ob-
ject-oriented programming the compo-
nents that build up the design, their re-
sponsibilities and the relations between
them.

 The consequences – describe the benefits
and liabilities that occur when imple-
menting the solution. Every solution has
both advantages and disadvantages. A

design pattern might bring a higher flex-
ibility of the application by decreasing its
performance. It is critical to understand
these trade-offs, as this is maybe the most
important aspect when choosing a design.

3 Remote Façade
In this chapter we will present the Remote
Façade pattern by describing its essential
elements.
3.1 Intent
Remote Façade provides a coarse-grained fa-
cade on fine-grained objects to improve effi-
ciency over the network [1].
3.2 Problem
The object-oriented paradigm has become so
wide spread, that even distributed systems
can use it. With modern frameworks (like
.NET, for an instance) it is easy to create ob-
jects that are available remotely.
However, due to the easiness of the devel-
opment, the system architect and the pro-
grammer tend to neglect the performance is-
sues that arise through the usage of the re-
mote methods. The fact is that remote meth-
ods are slow. The performance loss can vary
based on the configuration of the distributed
system, but it is generally accepted that a
calling a method over the network is usually
at least 1000 times slower than the same
method called in-process.

1

Informatica Economică vol. 14, no. 2/2010 87

So, even if the framework will reduce the
complexity of making a remote call, it cannot
improve the performance of the call. In order
to execute a remote call, a client must fulfil
at least the following tasks:
 Look up the address of the remote object.

The way that this is done depends on
whether the distributed system uses a sort
of load balancing or not. If load balanc-
ing is not used, then the address is saved
directly on the client; however, if we
have more than one server, the client
must usually contact a server location
service prior to contacting the server.

 Connect to the remote service. The per-
formance loss depends on the binding
type used (TCP/IP, message queues, etc).

 Serialize the data into a byte stream. The
serialization process transforms the data
into a format that can be decoded by the
remote peer.

 Encrypt the data. If the information sent
over the network is sensitive, it must be
encrypted. The framework usually fulfils
this task, but encrypting/decrypting a
byte stream decreases the performance.

 Invoke the method. The client must sub-
mit through the network the information
regarding the method that should be
called and the values of the parameters
for that method.

Furthermore, we are confronted with another
issue: the good design principles state that an
object should encapsulate the data in
attributes and only provide access to this in-
formation through methods (the so-called
getter and setter). This is how the fine-
grained objects are created: objects with me-
thods that are responsible for a small and
atomic piece of functionality.
The fine-grained objects are perfect for the
usage within the same process, as these are
very flexible. The large number of methods
can be combined in different ways, which in-
creases the reusability of these objects for
different scenarios. The performance is never
an issue in an in-process case, because the
calling of a method has (almost) no perfor-
mance loss.
However, this fine-grained interface per-

forms poorly in a distributed scenario, be-
cause in this case every method call involves
costs that cannot be neglected. The usage of
fine-grained objects implies invoking more
methods to perform a high-level task. The re-
sulting performance loss in a distributed sys-
tem can be dramatic.
3.3 Solution
The Remote Façade pattern defines only re-
mote objects with a coarse-grained interface.
These remote objects encapsulate the objects
on the server and expose only a small num-
ber of methods for calls over the network.
This greatly reduces the total number of re-
mote calls that are executed over the network
and therefore increases the performance of
the distributed application.
However, another consequence is that not all
the functionality exposed by the server will
be available to the client. This means that the
definition of the remote interface requires
good planning in order to make sure that the
entire server functionality needed by the
client is exposed and that only a small num-
ber of methods can be invoked remotely.
Usually, a coarse-grained interface is
achieved by combining the available me-
thods. For instance the getter and setter me-
thods are combined in bulks and only these
bulk methods are exposed over the network
in the “Remote Façade”-objects.
Furthermore, a coarse-grained object con-
tains quite a small piece of functionality. Its
task is mainly to translate the remote calls in
server internal calls and to send the results
obtained in these internal calls back to the
client.
Another issue that might rise is the granular-
ity of the “Remote Façade”-objects. For in-
stance, if we have to send over the network
information regarding an invoice, we will
have to provide general information about
the invoice, about the invoice lines (the sold
products) and about the customer (buyer). Do
we create only one object, exposing all nec-
essary methods or do we create an object for
the invoice and another one for the customer?
There is no wrong answer to this question,
but we would recommend defining as few
“Remote Façade”-objects as possible, be-

88 Informatica Economică vol. 14, no. 2/2010

cause this way we have a better overview
(and control) on the number of exposed me-
thods.
3.4 Structure
For a better understanding of this design pat-
tern, we choose as an example the Customer
class, which contains 6 attributes: an unique
ID from the database, a name, an address, a
value-added tax identification number, an e-
mail address and a phone number. This class
exposes getter and setter methods for each

attribute, which means we have a total of 12
methods.
Such a class would perform poorly if called
remotely in a distributed environment. There-
fore, we create a “Remote Façade” class,
which defines only 2 methods: one getter and
one setter for all attributes. Only this class
will be available for distributed calls, ensur-
ing that the total number of remote calls will
decrease.

Fig. 1. Remote Façade class

The new class works as a wrapper and con-
tains only functionality that translates the
remote calls in server-internal calls. The

main business logic is still contained in the
old Customer class.

Fig. 2. Remote Façade diagram

Informatica Economică vol. 14, no. 2/2010 89

3.5 Consequences
Benefits
 Improved performance due to the reduced

number of remote calls. Most of the
times, the bottleneck in the case of a dis-
tributed application is the transport over
the network. Decreasing the total number
of remote calls reduces the client latency
and therefore greatly improves perform-
ance.

 Simplified server interface. Defining only
a reduced number of remote calls helps
reducing the server complexity. The cli-
ent will only access high-level functional-
ity that has been tailored to fit its needs.
This is also the main motivation behind
the Façade pattern [2].

 Reduced dependencies between client
and server - also due to the reduced num-
ber of remote calls. Loose coupling be-
tween components (in our case, classes)
is one of the basic principles of good ob-
ject-oriented design as it leads to classes
that are more available for reuse.

Liabilities
 Additional programming effort/additional

costs. The Remote Façade classes must
be considered when designing a distrib-
uted architecture. This increases the total
cost of the application. The Remote Fa-
çade classes might not be difficult to pro-
gram, due to the fact that they only trans-
late the remote calls in server internal
calls, but we can have a large number of
classes, depending on the architecture
and the complexity of the application.

 Increased number of classes. By imple-
menting the Remote Façade design pat-
tern you add to your application a number
of classes that wrap the server functional-
ity. The number of these classes depends
on the complexity of your application. It
can be difficult to manage this number of
classes, especially if the server applica-
tion is already complex.

 Performance loss due to a possibly in-
creased quantity of data sent during a re-
mote call. By grouping methods in a Re-
mote Façade we also group the parame-

ters that are sent across the network. It is
easy to imagine a scenario where not all
the data sent by the server is also needed
on the client. However, the performance
loss caused by the amount of unnecessary
data being serialized / deserialized and
sent over the network in one remote call
is usually smaller than the performance
gain due to the implementation of the
Remote Façade.

4 Measuring the performance of a distri-
buted system
When measuring the performance of a distri-
buted application, there are two different pa-
rameters that should be considered:
 Client latency is the time that passes from

the moment when the client initiates the
remote call until the response sent by the
server reaches the client.

 Data throughput is the average amount of
data that is sent / received over the net-
work by the server within a certain time
period (for instance, 1 second).

Every distributed system should strive to re-
duce the client latency and to have a high da-
ta throughput.
In our sample we will only consider the
client latency, as this is sometimes consi-
dered more important than the throughput.
The reason is that usually an upgrade of the
server machine or a faster network can often
increase the data throughput, while the client
latency tends to remain the same.

5 Client latency with Remote Façade
As we have already discovered during the
presentation of the Remote Façade pattern,
there are two elements that can influence the
client latency when implementing the pat-
tern:
 The reduced number of remote calls de-

creases the client latency and therefore
greatly improves the performance of the
distributed system

 The increased amount of data serialized /
deserialized over the network increases
the client latency and decreases the per-
formance.

90 Informatica Economică vol. 14, no. 2/2010

Our task has been the measurement and
comparison of an application’s performance
when using / not using the pattern Remote
Façade.

6 Test environment
For the testing environment, we used a net-
work containing two computers connected
via Ethernet. A router was responsible for
forwarding the data packets between the
client and server. This is a common way of
setting up a LAN and therefore is a typical
scenario for running a distributed system.
The server and the client both run Windows
XP SP3 as an operating system. The .NET
Framework 3.5 must be installed on both sys-
tems in order to be able to run a Windows
Communication Framework -based applica-
tion.
We used TCP/IP as the communication
channel between client and server. In order to
eliminate as much as possible the influence
of the network traffic on the performance of
our test application, the traffic through the
network was reduced to a minimum.
The firewall was turned off (both on server
and client). This ensures that the firewall
cannot cause a delay due to some additional
checks performed on the IP packets sent over
the network.

7 Test application
We used Windows Communication Frame-
work (WCF) and C# to write the application
that helped us measure the client latency.
WCF uses the Broker pattern to implement a
distributed application [3], separating the de-
tails of the remote communication from the
application logic.
WCF needs three parameters in order to be
able to define a remote communication [4].
These parameters are also known as the
ABC:
 The Address indicates the location of the

server
 The Binding indicates the protocol used

to communicate between the server and
the client.

 The Contract specifies the interface that
is implemented by the server.

These parameters are defined in the configu-
ration file of both the client and the server.
We used sockets as a connection between the
server and the client. The sockets represent a
very common communication scenario when
working with distributed applications.
Our test application covers the following
scenarios:
 A distributed application implement-

ing/not implementing the Remote Façade
pattern requesting only one parameter.
The parameter chosen in this case was an
int (as a data type).

 A distributed application implement-
ing/not implementing the Remote Façade
pattern requesting two parameters. The
second parameter was declared as a string
and had a total length of 38.

 A distributed application implement-
ing/not implementing the Remote Façade
pattern requesting three parameters. The
third parameter was implemented as a
string and had a length of 58.

 A distributed application implement-
ing/not implementing the Remote Façade
pattern requesting four parameters. The
fourth parameter was declared as a string
and had a total length of 7.

 A distributed application implement-
ing/not implementing the Remote Façade
pattern requesting five parameters. The
fifth parameter was declared as a string
and had a total length of 17.

 A distributed application implement-
ing/not implementing the Remote Façade
pattern requesting six parameters. The
second parameter was declared as a string
and had a total length of 14.

The list of parameters in each presented sce-
nario contains the same list of parameters
from the previous scenario (see above) and
introduces an additional parameter.
A distributed application implementing the
Remote Façade pattern groups all parameters
in a method call. A distributed application
not implementing the pattern will issue a
separate remote call for each additional pa-
rameter.
We tested the client latency for each scenario
by running bulks containing 100 identical

Informatica Economică vol. 14, no. 2/2010 91

remote calls. Each bulk of remote calls was
run six different times in order to ensure that
the average value obtained is statistically rep-
resentative. This gives us a total of 6(rounds)
* 6(total parameter count) * 2(with/without
the pattern) * 100(count of remote calls in a
bulk) = 7200 test cases.
The first remote call was executed separately
and not included in any of the bulks. The first
call fulfills an additional task: it opens the
communication channel. This is a time con-
suming task. In our tests the first call had a
latency that fluctuated from 270 milliseconds
to 600 milliseconds, while a usual call takes
approximately 1 millisecond. But once the
communication channel was open, all subse-
quent remote call from our test reused this
resource. Therefore, the obtained results are
representative for the scenario where the
client and the server already established the
communication and the remote calls are ex-
ecuted at a steady rate. If the server is idle
and does not receive calls for a longer time it
will shut down the communication channel
and a new client call will have to re-open it.
Similar bulks implementing/not implement-
ing the pattern and having the same number
of parameters are tested subsequently in or-
der to ensure that possible network traffic
bursts do not influence the test dramatically.
The data sent over the network was identical
for similar scenarios. For instance if we
compared the cases implementing/not im-
plementing the Remote Façade pattern with
four parameters, the values of these parame-
ters were in both cases identical. This how
we ensured that the amount of data sent over
the network did not influence the test results.
Moreover, the data sent over the network was
cached in the memory during the server in-
itialization. This means that every call ac-
cessed the data from the cache instead of get-
ting it from the database. Therefore, we can
state that the database latency has no influ-
ence on our test results.
We switched off the security for the NetTcp
binding in WCF (in the application configu-
ration file). By default, the security is en-
abled for a distributed application written us-
ing WCF. If the security is not disabled for

the test application (both on server and cli-
ent) it can influence the overall performance
of each remote call.
Below you can see some of the client code
that was used to generate the 7200 remote
test calls.

class Program
{
static void Main(string[] args)
{
InvoiceServiceClient client = new
InvoiceServiceClient();
//The first call has to be executed
separately
FirstCall(client);
Console.WriteLine("Round 1");
Compare(client);
Console.WriteLine("Round 2");
Compare(client);
Console.WriteLine("Round 3");
Compare(client);
Console.WriteLine("Round 4");
Compare(client);
Console.WriteLine("Round 5");
Compare(client);
Console.WriteLine("Round 6");
Compare(client);
Console.WriteLine("Done");
Console.ReadLine();
}

private static void
FirstCall(InvoiceServiceClient client)
{
Stopwatch s = new Stopwatch();
s.Start();
client.GetCustomer1(1);
s.Stop();
Console.WriteLine("First call,
milliseconds: {0}\r\n",
s.ElapsedMilliseconds);
}

private static void
Compare(InvoiceServiceClient client)
{
Stopwatch s = new Stopwatch();
s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetCustomer1(1);
}
s.Stop();
Console.WriteLine("Remote Facade, 1
parameter, milliseconds: {0}",
s.ElapsedMilliseconds);

s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetID(1);
}
s.Stop();

92 Informatica Economică vol. 14, no. 2/2010

Console.WriteLine("Without Remote
Facade, 1 parameter, milliseconds: {0}
\r\n", s.ElapsedMilliseconds);
s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetCustomer2(1);
}
s.Stop();
Console.WriteLine("Remote Facade, 2
parameters, milliseconds: {0}",
s.ElapsedMilliseconds);
s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetID(1);
client.GetName(1);
}
s.Stop();
Console.WriteLine("Without Remote
Facade, 2 parameters, milliseconds: {0}
\r\n", s.ElapsedMilliseconds);
s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetCustomer3(1);
}
s.Stop();
Console.WriteLine("Remote Facade, 3
parameters, milliseconds: {0}",
s.ElapsedMilliseconds);
s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetID(1);
client.GetName(1);
client.GetAddress(1);
}
s.Stop();
Console.WriteLine("Without Remote
Facade, 3 parameters, milliseconds: {0}
\r\n", s.ElapsedMilliseconds);
s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetCustomer4(1);
}
s.Stop();
Console.WriteLine("Remote Facade, 4
parameters, milliseconds: {0}",
s.ElapsedMilliseconds);
s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetID(1);
client.GetName(1);
client.GetAddress(1);
client.GetVATIdentificationNumber(1);
}
s.Stop();

Console.WriteLine("Without Remote
Facade, 4 parameters, milliseconds: {0}
\r\n", s.ElapsedMilliseconds);
s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetCustomer5(1);
}
s.Stop();
Console.WriteLine("Remote Facade, 5
parameters, milliseconds: {0}",
s.ElapsedMilliseconds);
s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetID(1);
client.GetName(1);
client.GetAddress(1);
client.GetVATIdentificationNumber(1);
client.GetMail(1);
}
s.Stop();
Console.WriteLine("Without Remote
Facade, 5 parameters, milliseconds: {0}
\r\n", s.ElapsedMilliseconds);
s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetCustomer(1);
}
s.Stop();
Console.WriteLine("Remote Facade, 6
parameters, milliseconds: {0}",
s.ElapsedMilliseconds);

s.Reset();
s.Start();
for (int i = 0; i < 100; i++)
{
client.GetID(1);
client.GetName(1);
client.GetAddress(1);
client.GetVATIdentificationNumber(1);
client.GetMail(1);
client.GetPhoneNumber(1);
}
s.Stop();
Console.WriteLine("Without Remote
Facade, 6 parameters, milliseconds: {0}
\r\n", s.ElapsedMilliseconds);
Console.WriteLine("");
}
}

8 Test results
The obtained client latency results for each
bulk of remote calls are presented in table 1.
Each value represents the duration in millise-
conds of 100 identical remote calls. This is
the interval of time from the first request sent
to the server until the client receives the last

Informatica Economică vol. 14, no. 2/2010 93

response. The lower the client latency, the better application performance is.

Table 1. Client latency calculated during 6 rounds of tests with/without implementing the
Remote Façade pattern

 1st
round

2nd
round

3rd
round

4th
round

5th
round

6th
round

Remote Facade 1 parameter 132 106 87 88 94 90
Without Remote Facade 1 parame-
ter

122 96 87 90 86 86

Remote Facade 2 parameters 130 113 89 91 88 94
Without Remote Facade 2 parame-
ters

239 196 176 180 176 181

Remote Facade 3 parameters 132 98 89 102 92 108
Without Remote Facade 3 parame-
ters

365 264 267 267 265 270

Remote Facade 4 parameters 136 95 92 108 109 105
Without Remote Facade 4 parame-
ters

404 356 357 360 376 365

Remote Facade 5 parameters 118 98 102 109 105 113
Without Remote Facade 5 parame-
ters

448 452 444 448 449 455

Remote Facade 6 parameters 122 98 106 117 96 121
Without Remote Facade 6 parame-
ters

549 533 535 546 545 556

Based on the results contained in table 1 we
further calculated the average client latency
for each test case. Table 2 shows the obtained
average values. The client latency values ob-

tained when implementing the pattern are
presented in the second column while the
values obtained by not implementing the pat-
terns are shown in the third column.

Table 2. Average client latency with/without implementing the Remote Façade pattern

Number of distinct
parameters

Implementing Remote Facade Without Remote Fa-
cade

1 99.5 94.5
2 100.8333333 191.3333333
3 103.5 283
4 107.5 369.6666667
5 107.5 449.3333333
6 110 544

The client latency can be better compared if
we analyze the graphical representation of
the results (figure 3). Without Remote
Façade, the client latency grows in an almost

perfect arithmetic progression when the
number of parameters sent over network in-
creases due to the fact that the number of re-
mote calls increases too.

94 Informatica Economică vol. 14, no. 2/2010

Fig. 3. Comparison of client latency with/without Remote Façade

The only case when the version that is not
implementing the Remote Façade pattern
performs better is the scenario where we
have only one parameter. However, this case
can never occur when implementing Remote
Facade because, as we already stated, the in-
tent of this pattern is to group methods (and
therefore their parameters too) in objects
with coarse-grained interfaces.
It is interesting to observe the performance
degradation that occurs when the number of
parameters grows and the pattern is not used.
The client latency multiplies in this case with
a factor comparable to the number of remote

calls (parameters). Compared to this perfor-
mance degradation, the performance loss
when using the Remote Façade pattern can
almost be neglected.
Analyzing the graphical data representation,
we can notice the almost perfect linear
growth of client latency with the number of
parameter. This shows us that there is no data
aberration in the samples that we have cho-
sen. Furthermore, this means that it makes
sense to calculate for each sample the percen-
tage of performance loss relatively to the first
scenario (containing only one parameter).
The results are shown in table 3.

Table 3. Client latency performance loss compared to the one parameter-scenario

Number of distinct
parameters

Performance loss (%) when
implementing Remote Fa-

cade

Performance loss (%) without
Remote Facade

2 1.340033501 102.4691358
3 4.020100503 199.4708995
4 8.040201005 291.1816578
5 8.040201005 375.4850088
6 10.55276382 475.6613757

0

100

200

300

400

500

600

1 2 3 4 5 6

Client latency(ms)

Number of distinct parameters

Client latency comparison with and without Remote Facade

Implementing Remote Facade

Without Remote Facade

Informatica Economică vol. 14, no. 2/2010 95

When the Remote Façade pattern is imple-
mented, the maximal performance loss due to
an increased number of parameters sent over
the network is about 10,5%. However, the
similar test case implemented without the
pattern, has a performance loss of approx-
imately 475%.

9 Conclusions
The results show without a doubt that the
implementation of the Remote Façade pattern
increases the performance of a distributed
application. This comes as no surprise, as re-
ducing the number of consequent remote
calls should decrease the client latency.
However, the novelty brought by this study is
the huge performance difference between a
version implementing the pattern and one
that doesn’t.
We would expect that processing a larger
number of parameters (the serialization / de-
serialization and especially the sending over
the network) has more influence on the per-
formance. The serialization / deserialization
is done in-process (on the server and on
client, respectively), so that the performance
loss due to the converting of a larger amount
of data can be neglected.
But we thought that at least by sending a
larger amount of data we would negatively
influence the performance of our distributed
application. However, the tests have shown
that this is not the case. The performance loss
is only about 10% when the amount of data
sent over the network increases significantly.
We have a data amount growth of 6700%, as
in the first case we sent only 4 bytes while in
the last case we sent 272 bytes.
There is only one explanation that can justify
this result: all parameters transmitted during
a remote call were sent in only one IP packet.
Therefore, we can state that as long as all pa-
rameters fit in one IP packet the only factor
that influences the performance of a distri-
buted application is the number of remote
calls.
Furthermore, it would be interesting to de-
termine the point where the usage of the pat-

tern is beneficial for the performance of the
application. As we can see, if we have only
one value that we pass as a parameter in the
remote call, then the best choice is to go
without using the Remote Façade pattern.
The performance difference is not very sig-
nificant (less than 5%).
For all other cases (two parameters or more)
the implementation of the pattern brings a
major performance improvement. The per-
formance gain when choosing the pattern is
directly proportional with the number of pa-
rameters that are grouped in one remote call.
For instance, in the case of 6 parameters, the
version implementing the pattern was almost
5 times faster than the version not imple-
menting the pattern.
In conclusion, we would recommend at least
considering the implementation of the Re-
mote Façade pattern whenever a distributed
system is designed and implemented. The
more parameters are grouped in a remote
call, the better the overall performance of the
distributed application is.

10 Next steps
It would be interesting to analyze in another
paper if the results observed in this study are
confirmed also when using much larger
amount of data (a larger dataset, for in-
stance).

References
[1] M. Fowler, D. Rice, M. Foemmel, E.

Hieatt, R. Mee and R. Stafford, Patterns
of Enterprise Application Architecture,
Addison Wesley, 2002.

[2] E. Gamma, R. Helm, R. Johnson and J.
Vlissides, Design Patterns. Elements of
Reusable Object-Oriented Software, Ad-
dison-Wesley, 1995.

[3] C. Rablou, Distribution strategies in clus-
tered systems, Bucharest, 2010.

[4] S. Resnick, R. Crane and C. Bowen,
Essential Windows Communication
Foundation (WCF): For .NET Frame-
work 3.5 (Microsoft .Net Development),
Addison-Wesley, 2008

96 Informatica Economică vol. 14, no. 2/2010

Cosmin RABLOU has graduated the Faculty of Cybernetics, Statistics and
Economic Informatics in 2001. He joined the same year the team at Derdack
GmbH, Germany, where his main focus was on the telecommunications and
mobile solutions development. In 2007 he joined OctaVIA AG, where he
currently develops SAP applications for telecommunications. His main pro-
fessional interests are object-oriented design and programming (with primary
focus on design patterns) and distributed systems (mainly web applications).

